Новости

Ученые представили новый класс веществ для проточных аккумуляторов

29 декабря 2020 Рубрика: Исследования и разработки, Новости организаций Ключевые слова: МГУ, проточные батареи, аккумуляторные батареи, накопители энергии

Ученые физического и химического факультетов МГУ совместно с коллегами из ФИЦ ХИФ и Сколтеха представили новый класс веществ для проточных батарей. Сравнимые по емкости с самыми популярными соединениями, они оказались намного дешевле и экологичнее. Статья опубликована в журнале The Journal of Physical Chemistry Letters и поддержана грантом РФФИ.

Проточные батареи — тип гальванического элемента, в котором химическая энергия обеспечивается за счет двух разделенных мембраной жидких химических компонентов. Движение электрического тока сопровождает ионный обмен через мембрану, в то время как обе жидкости циркулируют в собственном отдельном пространстве. Основные преимущества таких батарей — масштабируемость и экономичность, поэтому их выгодно использовать в крупных стационарных системах, чтобы хранить энергию. В данной работе рассматриваются редокс-батареи, которые можно перезаряжать.

Самые распространенные батареи такого типа работают на солях тяжелых металлов. Однако это довольно дорого и опасно. Достаточно представить склад, заставленный бочками с растворенными в серной кислоте солями ванадия. Поэтому ученые ищут альтернативные окислительно-восстановительные пары, в том числе на основе органических веществ. Последние имеют много преимуществ: они не такие дорогие, как металлы, экологичнее и безопаснее.

«Использование органических материалов в крупномасштабных электрохимических накопителях энергии — очень привлекательная идея, — объяснил один из авторов работы, старший научный сотрудник химического факультета МГУ Даниил Иткис. — На мой взгляд, наиболее перспективно это направление для проточных аккумуляторов, т.к. в нише малых и средних аккумуляторных батарей органике будет все труднее конкурировать с металл-ионными системами».

Химикам и физикам Московского университета удалось создать такие дисперсные системы, обладающие окислительно-восстановительными свойствами, — полимерные микрогели с размером частиц в 200–300 нанометров на основе полиакриловой кислоты и ее азотсодержащих производных. Причем сотрудники кафедры физики полимеров и кристаллов физического факультета МГУ присоединили к этим цепочкам циклическую молекулу TEMPO — азотсодержащий реактив, который широко применяется в качестве катализатора реакций и имеет высокую редокс-активность. А на кафедре неорганической химии химического факультета изучили электрохимические свойства.

«Исследования материала показывают, что около 14% вещества сохраняют электроактивные свойства. Это означает, что мы можем получать низковязкий электролит для проточных батарей емкостью 2.5 мАч/г, — рассказала один из соавторов статьи, старший научный сотрудник кафедры физики полимеров и кристаллов физического факультета МГУ Елена Кожунова. — Мы ожидаем, что дальнейшая работа позволит нам выйти на емкость на литр раствора, которая могла бы конкурировать с таковой для ванадиевых проточных аккумуляторов. При этом такие растворы будут нетоксичными и значительно более дешевыми».

Серьёзно повышает стоимость проточных аккумуляторов мембрана. В случае с солями металлов требуется очень мелкопористая мембрана, которая выдерживает серную кислоту. А использование высокомолекулярных органических соединений в аккумуляторах проточного типа позволяет использовать более дешевые и простые в изготовлении ионообменные мембраны с большим разбросом в размерах пор. Такое нововведение может критически изменить стоимость батареи и, соответственно, привести к качественному изменению на рынке запасенной электроэнергии. Впрочем, для этого надо ещё немного поработать.

«Наша работа показала возможность применения редокс-активных микрогелей, но промышленное производство пока планировать рано хотя бы потому, что пока мы смогли получить всего один материал (для положительного электрода), а не пару, которая требуется для создания прототипа. Кроме того, предложенный нами материал нуждается в совершенствовании, — заключил Даниил Иткис. — Сейчас мы задумываемся о том, как будет проходить заряд/разряд в системах с высокими мощностями — очень важный фактор для реального применения в промышленных масштабах».

Микрогели. Снимок сделан при помощи электронного микроскопа. Елена Кожунова/МГУ

Микрогели. Снимок сделан при помощи электронного микроскопа. Елена Кожунова/МГУ

Источник:

  • Научная Россия, Пресс-служба МГУ

Ссылка:

Карточка организации:

Добавить комментарий

  • 28
  • 29
  • 30
  • 31
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31