Статьи

Квантовый алгоритм Гровера впервые продемонстрирован в России

30 сентября 2019 Рубрика: Исследования и разработки Ключевые слова: исследования, квантовые технологии, алгоритм Гровера, сверхпроводниковый кубит

В рамках проекта Фонда перспективных исследований (ФПИ) российским ученым впервые удалось продемонстрировать квантовый алгоритм Гровера. Успешный эксперимент был проведен на созданном ранее прототипе элементарного квантового сверхпроводникового процессора.

Исполнителями проекта выступает научный консорциум ведущих российских вузов (МФТИ, МИСиС, НГТУ, МГТУ им. Н.Э. Баумана), ИФТТ РАН и ФГУП «ВНИИА им. Н.Л. Духова», являющееся головной организацией консорциума. Проект осуществляется при поддержке Министерства образования и науки России и ГК Росатом.

Квантовые технологии на основе сверхпроводниковой элементной базы развиваются в мире на протяжении более 20 лет, и в этом направлении уже достигнуты значительные успехи. Первый российский кубит был изготовлен в 2015 году совместными усилиями нескольких лабораторий под руководством Олега Астафьева, Алексея Устинова и Валерия Рязанова.

В 2016 году Фонд перспективных исследований дал старт глобальному проекту по разработке технологии обработки информации на основе сверхпроводниковых кубитов, в рамках которого была создана специализированная лаборатория под руководством профессора Валерия Рязанова, заведующего лабораторией сверхпроводимости ИФТТ РАН. Менее чем за три года была разработана технология создания сверхпроводящих двухкубитных схем (прототипа отечественного квантового компьютера) и продемонстрированы однокубитные и двухкубитные операции, позволяющие создавать квантовую запутанность и в перспективе реализовывать любой квантовый алгоритм.

Точность однокубитных операций превысила 99%, точность двухкубитных — 80%, что позволило продемонстрировать на двухкубитной схеме настоящий квантовый алгоритм Гровера — решение задачи перебора.

Алгоритм Гровера может стать основой для создания сверхбыстрых баз данных, работающих с огромными массивами данных и способных в считанные мгновения находить в них нужную информацию.

Одной из ключевых характеристик кубитов, позволивших продемонстрировать квантовые операции, является время когерентности и «время жизни» кубита. В рамках проекта ученые и инженеры совместного НОЦ ФМН ФГУП «ВНИИА им. Н.Л. Духова» и МГТУ им. Н.Э. Баумана разработали технологию создания сверхпроводниковых кубитов-трансмонов с характерными временами когерентности порядка 50 мкс, что приближает российские разработки в этой области к лучшими мировыми аналогам.

На следующей стадии реализации проекта ФПИ планирует продемонстрировать возможность создания квантовых симуляторов на основе массивов из более 20 кубитов и решения с их помощью квантово-механических задач. Целью проекта является разработка технологии, позволяющей в дальнейшем создать полноценный квантовый компьютер из десятков кубитов.

Предполагается, что создание квантового компьютера позволит существенно ускорить процесс компьютерного моделирования и решать недоступные для современных суперкомпьютеров задачи в таких областях как, например, квантовая химия, искусственный интеллект и материаловедение, что существенно удешевит и ускорит разработку новых лекарств и материалов.

По словам члена-корреспондента РАН, доктора физико-математических наук Юрия Махлина, демонстрация двухкубитных квантовых операций (вслед за однокубитными), их достаточно высокая надежность и скорость — важное достижение в развитии квантово-информационных систем на основе джозефсоновских контактов.

«Эти результаты достигнуты объединёнными усилиями ведущих российских научных групп, работающих в области сверхпроводниковых квантовых технологий, — рассказал Юрий Махлин. — Можно сказать, что их совместная работа позволила всего за несколько лет создать базовую технологию для развития квантовых вычислений в России и обеспечить отечественной науке конкурентоспособность в этой области. По отдельности участвующим группам не удалось бы продвинуться так далеко».

Добавить комментарий

  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 1
  • 2
  • 3
  • 4
  • 5